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Abstract

This paper describes the details of implemen-
tation of a yeneral numerical procedure developed
for the accurate and economical computation of
natural frequencies and associated modes of any
elastic structure rotating along an arbitrary
axis. A block version of the Lanczos algorithm is
derived for the solution that fully exploits asso-
ciated matrix sparsity and employs only real num-
bers in all relevant computations. It is also
capable of determining multiple roots and proves
to be most efficient when compared to other, simi-
lar, existing techniques.

Introduction

Gyroscopic structural systems are often
encountered in practice, Thus, some structures
such as satellites are usually spin-stabilized
whereas others, like helicopters and turbines,
have rotating parts. An accurate evaluation of
their frequencies and mode shapes is of utmost
importance in predicting their stability and also
in implementing effective closed-loop control of
the gyroscopic systems. The usual solution proc-
ess starts with a finite-element discretization
ot the structure yielding appropriate stiffness
and inertia properties, which in turn are uti-
lized to yield the natural frequencies and asso-
ciated modes. Such data are next utilized to
compute unsteady aerodynamic forces enabling com-
putation of flutter and divergence charac-
teristics. An extension of the analysis yields
the state-space matrices enabling open- and
closed-loop control analysis of the structure.
The accuracy of such an analysis is, however,
entirely dependent on appropriate computation of
vibrational characteristics of the system.

The equation of free vibration of any struc-
ture discretized by the finite-element method and
spinning along an arbitrary axis with a uniform
spin rate @ is given by

M+ Cq+Kg=0 (1)
in which
K = Kg +Kg + K
and
M inertia matrix
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c skew-symmetric Coriolis matrix, function
of Q

K elastic stiffness matrix
Kg geometric stiffness matrix, function of @

K' centrifugal force matrix, also a func-
tion of 92

q deflection vector

For small vibrations, the K and M matrices are
real, symmetric, and positive definite. The
solution of Eq. (1) may be achieved by first
rearranging the same as

Ay +By = 0 (2)
in which
™M 0
A:
10 K
(0 -M
B:
LM C
q
y =1, (2a)
L.q

where A is symmetric and B is skew-symmetric. A
solution of Eq. (2) is obtained by substituting

y = et yielding
(A +uwB)y =0 (3)

in which the natural frequencies w are pure imag-
inary, the vectors being complex and both occur-
ring as complex conjugate pairs.

The conventional solution process for Eq. (3)
involves implicit inversion of A to reduce the
eigenvalue problem in terms of a single matrix
of order twice the original size, which however
is rather inefficient due to its nonsparse char-
acter and increased order.

A combined Sturm sequence and inverse itera-

tion (SS/11) procedure was presented earlierl for
the eigenproblem solution of gyroscopic systems
that exploits inherent sparsity of constituent
matrices of Eq. (2). Reference 2 provides a sur-



vey of solution methods for free-vibration analy-
sis of structures including spinning ones. An
improved version of the SS/II technique has further

been presented in a recent paper3 that also gives
details of numerical techniques for computation of
in- and out-of-plane forces in a shell and also
line elements spinning along an arbitrary axis.

The Lanczos method has been applied earlier®s5 for
the eigenproblem solution of real symmetric matri-
ces. Reference 4 also presents the relative merit
of the block Lanczos algorithm over the conven-

tional nonblock procedure. In a recent paper,6 a
nonblock version of the Lanczos algorithm was pre-
sented that is suitable for the economical solution
of the eigenproblem of gyroscopic systems.

The purpose of this paper is to provide details
of a related block Lanczos algorithm and its imple-
mentation in a general-purpose finite-element
computer program, STARS? (STructural Analysis
RoutineS). Numerical results are also presented
that prove the efficacy of the current solution
technique.

Implementation of a Block Lanczos
Solution Procedure

To implement the current procedure, Eq. (3)
is first rewritten as

(A -2y =0 (4)

in which D = i*B is a pure imaginary Hermitian
matrix, i* is the imaginary number v-1, the roots
A = i*w are real and occur in pairs i), =11, ...,
Ans -Ap whereas the corresponding eigenvectors
occur in compliex conjugate pairs. The roots of
the oriyinal system defined by Eq. (3) may then
be simply obtained as w = A/i* while noting that
the eigenvectors remain the same for both cases.

To develop the present algorithm, it is nec-
essary to yield a single matrix out of the set
of two matrices that define Eq. (4). This is
achieved by performing a Choleski decomposition

T
A = Lala (5)

L 0
Lp = [ " ] (5a)
0 Lk

and LM, Lg are the lower triangular forms of mat-
rices M and K, respectively. Appropriate trans-
formation of Eq. (4) may then be effected by
utilizing Eq. (5), yielding

in which

(H-yl)y=0 (6)
in which y = 1/, w = 1/i*y, and the matrix H is
expressed as

T-T
0 -i*LmLg
H = (6a)
-1 a1 AT
i* Lx Ly i*Lk CLg

It may be noted that H is a pure imaginary
Hermitian matrix and the current transformation
retains the banded form of associate matrices.

In all subsequent computations, n defines the
order of H, whereas myj denotes the half-bandwidth

of constituent M, K, and C matrices.

As the first step toward implementing the
procedure using a block size m, a number of rele-
vant matrices are defined as

Gi = n x m complex matrix with
orthonormal columns, that is,

T
GiGy = I

Ei = m x m Hermitian matrix

F; = m x m upper Hessenberg complex matrix
Wi, Xj = n x m complex matrices
Tj = im x im block tri-diagonal Hermitian

matrix with blocks of size m x m

Furthermore, a unitary matrix Jp of order (p x p)
is next utilized to relate complex matrices
occurring in the Lanczos method to corresponding
matrices that are real in nature. Thus denoting S
as a matrix of columns that are eigenvectors of H
occurring in complex conjugate pairs, the matrix

§ = Sjn is a real, orthogonal matrix of order n.

Such a procedure may then be used to recast the
block Lanczos algorithm in terms of real numbers
effecting considerable saving in solution time,
It may be noted in this connection that for an
even positive integer p, the matrix Jp is formed

as p/2 replications of J2 on the diagonal, which
in turn is defined as

dg = — (7)
ﬁ i* %

Numerical Scheme

Let él be an arbitrary, real n x m matrix
with orthonormal columns. Then for i =1, 2, ...,
the computational procedure is developed by the
following steps.

Step 1. Perform matrix operation
ii = ﬁéi (for i = 1)

an A AT )
= HGj + Gj_1Fj-1 (for i > 1)

in which the matrix substitutions are

H = i*H ﬁ, n x n real skew-
symmetric matrix
Gj = Gi, n x m real matrix
with orthonormal
columns; that is,

al a
Gi Gj = I

[
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T -
Fi = i*yFidm Fi, m x m real upper
triangular matrix

Step 2. Compute the reduced order matrix
- ala
Ei = GjW;4

where the followiny substitutions are made

1

ti = i*amﬁidm Ei, m x m real skew-

symmetric matrix
W = i*ﬁidm ﬁi, n x m real matrix
Step 3. Produce the matrix

ii = ﬁi - éig‘i

the substitution being

Xj = i*iidm ij, n x m real matrix
Step 4. Use a standard procedure such as the

Givens, Householder, or Gramm Schmidt method to
obtain the "QR" factors of Xj namely Gj+1 and Fj

a a - AT A
satisfying Xj = Gj+1Fj and Gj4+1Gi+1 = I.

Step 5. Form the block tri-diayonal matrix
Ti of order im
[ a T ]
Ej -F;
\\\
Fi B2 ™
\\ \ \\
L3 \\ \\
T = AN \\\ \\\ AT
SO MR

Fi-l SEj
a solution of which yields the eigenvalues and
vectors of the system as the ith stage approxi-

mation. Furthermore, it may be noted that T;

and 1*T; have the same eigenvalues that are real,
occur in pairs, and have opposite signs. Also

if the eigenvectors of i*Ty occurring as complex

conjugate pairs are denoted by, say, ¥ and ¥, the

corresponding vectors for Tj may then be obtained
T -To

as v=4dJd ¥ and z =J ¥, which are not mutually

conjugate. The corresponding pair of real roots

{(p, -p) are Ritz values of H, the corresponding

Ritz vectors beiny

a = ujv = ;9

<1

B = ujz = §j
where

T T
4; = uwyd = [67, ..., Gj1 4

n

[G1s vees éi]
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Since @j is real, a and B are mutually conjugate
so that g =_&.

Step 6. Perform convergence tests using vec-
tors computed in step 5 and matrix Fj obtained

in step 4. If the analysis needs to be continued,
then a selective orthogonalization of matrix Gj4)

must be carried out so that its columns are or-
thogonalized relative to some of the current Ritz

vectors.? Thus denoting g as a column of Gj4+] and

expressing a Ritz vector a in terms of two real
n vectors as

a =8+ i*¢

§ may be orthogonalized with respect to & and ¢ and
a new real vector § may be obtained as follows:

g:= 9 - {20 ¢
(eTe)
and
= g - _!lg_ ’
(¢T9)

from which the orthogonalized g is simply obtained
as g = §J.

A1l computations in the above procedure are
performed in real arithmetic that has been imple-
mented in the STARS/ program and proves to be most
efficient in the solution of vibration problems of
complex, gyroscopic systems.

Numerical Examples

The newly implemented block Lanczos procedure
employing real numbers (BL/R) is used to solve an
extensive number of test cases. Such results
are compared with solutions obtained from other
existing similar techniques such as the block
Lanczos technique using complex arithmetic (BL/C)
and the SS/II methods. Because all such proce-
dures have been implemented in the STARS program,
it was used to perform analyses of a number of
test cases presented here, employing a Digital
Equipment Corp. VAX 11-750 computer,

Spinning Cantilever Beam

A spinning cantilever beam (Fig. 1), discre-
tized by 12 line elements for the natural fre-
quency analysis, has the following relevant
properties

Element length (%) 5.0
Moment of inertia (lyy) 1/12
Moment of inertia (Izz) 1/24
Cross-sectional length (A) 1.0
Young's modulus (E) 30 x 106
Element mass/unit length 1/5
Uniform spin rate (Qy) 0.33 Hz



and results of such analyses employing various
procedures are given in Table 1.

Spinning Cantilever Plate

Figure 2 depicts a rectangular cantilever
plate spinning along an arbitrary axis with a
uniform spin rate Qg. A 10 x 15 finite-element
mesh employing thin-shell elements is used to
model the plate that has the following structural
characteristics

X-side length (2y) 10

Y-side length (gy) 15

Thickness (t) 0.1

Young's modulus (E) 10 x 106
Mass density (p) 0.259 x 10-3
Poisson's ratio (v) ’ 0.3

Number of degrees of freedom 1056

The plate was first analyzed for a spin rate
27 = 0.7w] and subsequently for a resulting spin

vector Qp = 0.7wj having components Qy = Qy = Q7 =
0.7 w1/V¥3. Results of such analyses by the three
solution techniques are given in Table 2.

A comparison of results presented in the two
tables amply demonstrates the significant advan-
tages of the present procedure.

Concluding Remarks

A block version of the Lanczos algorithm has
been presented that exploits matrix sparsity and
further performs all numerical computations in
real numbers for the eigenproblem solution of gyro-
scopic systems. While each solution step in the
block algorithm is costiier than the conventional
nonblock Lanczos method,b fewer steps are needed.
The overall saving in solution time is comparable
to that effected by block multivector inverse
iteration in place of the single-vector iteration

process. Furthermore, this procedure is capable
of effective determination of multiple roots in

which the usual nonblock procedure is deficient.4
Also, although some experience may be necessary

in choosing an optimum block size, a range between
2 and 4 has been found to be effective. From

the results presented in the two tables, it is
apparent that the current procedure is consid-
erably more efficient than other similar existing
solution techniques.
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Table 1 Results of free-vibration
analysis of cantilever beam spinning
at rate of 0.33 Kz (2.073 rad/sec)

Eigenvalue
Mode
BL/R BL/C S§/11
1 3.345 3.345 3.350
2 3.602 3.604 3.603
3 16.403 16.404 16.404
4 22.491 22.490 22.491
5 44.486 44.487 44,487
6 62.258 62.259 62,258
CPU time, 20 75 73
sec

BL/R = block Lanczos procedure using
real numbers

BL/C = block Lanczos procedure using
complex numbers

SS/I1 = combined Sturm sequence and
inverse iteration procedure

Central processing unit time is for
10 modes and frequencies

Table 2 Natural frequencies of a spinning cantilever plate

Natural frequency (rad/sec)

QR = Q7 = 0.70w] = QR = 0.70wy
Mode 149.50 rad/sec Qx = Qy = Q7 = 86.32 rad/sec
BL/R BL/C SS/11 BL/R BL/C SS/I1
1 526.69 526.71 526.71 319.46 319.46 319.46
2 780.31 780.30 780.30 522.79 522.79 522.79
3 1375.15 1375.10 1375.14 933.32 933.32 933.32
4 1734.95 1735.03 1735.03 1339.69 1339.71  1339.67
5 1791.21 1791.25 1791.25 1586.76 1586.83 1586.83
6 2613.78 2615.02  2615.02 2049.31 2049.51 2112.78
CPU time, 15 52 251 14 45 255
min

BL/R = block Lanczos procedure using real numbers

BL/C

block Lanczos procedure using complex numbers
SS/11 = combined Strum sequence and inverse iteration procedure

Central processing unit time is for 10 modes and frequencies
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Fig. 2 Rectangular spinning cantilever plate.




1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No.
NASA TM-88290
4. Title and Subtitle 5. Report Date
[HPLEMENTATION OF A BLOCK LANCZOS ALGORITHM April 1987
FOR EIGENPROBLEM SOLUTION OF GYROSCOPIC SYSTEMS 8. Performing Organization Code
7. Author(s) 8. Performing Organization Report No.
Kajal K. Gupta, NASA Ames-Dryden, and H-1404
Chartes L. Lawson, Harvey Mudd College
10. Work Unit No.
9. Performing Organization Name and Address RTOP 533-02-51
NASA Ames Research Center
Dryden Fiight Research Facility 11. Contract or Grant No
P.0. Box 273
Edwards, CA 93523-5000
13. Type of Report and Period Covered
12. Sponsoring Agency Name and Address Technical Memorandum
National Aeronautics and Space Administration 14. Sponsoring Agency Code
Washington, DC 20546
15. Supptementary Notes
Prepared as AIAA Paper 87-0946-CP to be presented at the AIAA Dynamics Specialty Conference,
Monterey, California, April 9, 1987.
16. Abstract

This paper describes the details of implementation of a
general numerical procedure developed for the accurate and
economical computation of natural frequencies and associated
modes of any elastic structure rotating along an arbitrary
axis. A block version of the Lanczos algorithm is derived
for the solution that fully exploits associated matrix spar-
sity and employs only real numbers in all relevant computa-
tions. It is also capable of determining multiple roots and
proves to be most efficient when compared to other, similar,

existing techniques.

17. Key Words (Suggested by Author(s))

Block Lanczos algorithm
figenvalue problem
Finite elements
Spinning structures
Structural dynamics

18. Distribution Statement
Unclassified — Unlimited

Subject category 39

19. Security Classif. (of this report)

Unclassified Unclassified

20. Security Classif. {of this pege)

21. No. of Pages 22, Price*

7 AQ2

*For sale by the National Technical Information Service, Springfield, Virginia 22161.




